Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            A green‐emitting perovskite first‐order distributed feedback (DFB) laser based on the methylammonium lead bromide (MAPbBr3) with high stability is demonstrated for the first time. The laser achieves stable lasing at 550 nm with a full width at half maximum of 0.4 nm. Low lasing threshold of 60 μJ cm−2under nanosecond pulsed excitation and 3.1 μJ cm−2under femtosecond pulsed excitation is observed, showing a much lower lasing threshold compared with the second‐order DFB cavities, which are fabricated on the same substrate. By optimizing the antisolvent treatment and encapsulating with poly(methyl methacrylate), the laser lifetime, resistance to moisture, lasing threshold, and intensity are significantly improved. The lasers are fabricated with a complementary metal‐oxide‐semiconductor‐compatible process, thus offer promising potential for the integrated photonic devices.more » « less
- 
            Abstract The broad implementation of thermoelectricity requires high‐performance and low‐cost materials. One possibility is employing surfactant‐free solution synthesis to produce nanopowders. We propose the strategy of functionalizing “naked” particles’ surface by inorganic molecules to control the nanostructure and, consequently, thermoelectric performance. In particular, we use bismuth thiolates to functionalize surfactant‐free SnTe particles’ surfaces. Upon thermal processing, bismuth thiolates decomposition renders SnTe‐Bi2S3nanocomposites with synergistic functions: 1) carrier concentration optimization by Bi doping; 2) Seebeck coefficient enhancement and bipolar effect suppression by energy filtering; and 3) lattice thermal conductivity reduction by small grain domains, grain boundaries and nanostructuration. Overall, the SnTe‐Bi2S3nanocomposites exhibit peakz Tup to 1.3 at 873 K and an averagez Tof ≈0.6 at 300–873 K, which is among the highest reported for solution‐processed SnTe.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available